
Reinforcement Learning

Sudip Bhujel

University of Kentucky

October 4, 2024

1 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

2 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

3 / 68

Supervised Learning Vs Unsupervised Learning Vs RL

▶ Supervised Learning
▶ Given: Labeled data, correct output is provided for each input
▶ Goal: Minimize the difference between predicted o/p and actual o/p
▶ Example: Cat and dog image classification

▶ Unsupervised Learning
▶ Given: Unlabeled data
▶ Goal: Identify the underlying structure, such as cluster and associations
▶ Example: Grouping region by similar weather

▶ Reinforcement Learning
▶ Given: Possible actions/interactions and Environment
▶ Goal: Maximize cumulative reward by learning policy (Which action to take in

current state)
▶ Example: Training autonomous agent to fly helicopter

4 / 68

Terminology

Figure 1: Basic RL in action (From the
internet)

Figure 2: Maze Problem (From the internet)

5 / 68

Rewards

▶ Scalar Value: Numerical feedback (positive, negative, or zero)

▶ Immediate Feedback: Given immediately after an action is taken

▶ Objective: The agent aims to maximize cumulative rewards over time

Definition (Reward hypothesis)

All goals can be described by the maximisation of expected cumulative reward

6 / 68

Rewards (1)

Figure 3: Maze Problem (From the internet)

Rewards

▶ Positive reward (+10 points) for the
goal

▶ Negative reward (-5 points) for red
blocks

▶ Neutral reward (-1 points) for
non-goal standard movements,
discourage taking too many steps
unnecessarily

7 / 68

History and State

▶ The history of sequence of observations, actions, and rewards

Ht = O1,R1,A1, ...,At−1,Ot ,Rt

▶ It contains all the information the agent has accumulated and can be very complex

▶ State is a summary of the history and contains relevant information needed for
decision-decision making

▶ Reduces the complexity of the entire history into a manageable form

▶ Formally, state is a function of history:

St = f (Ht)

8 / 68

State

▶ Environment state (Se
t):

▶ Whatever data the environment uses to pick the next observation/reward
▶ Usually not visible to the agent

▶ Agent state (Sa
t):

▶ Whatever information agent uses to pick next action
▶ It can be any function of history:

Sa
t = f (Ht)

9 / 68

Information State

An information state (a.k.a. Markov state) contains all useful information from the
history.

Definition
A state St is Markov if and only if

P[St+1 | St] = P[St+1 | S1, ...,St]

▶ The future is independent of the past given the present

▶ Once the state is known, the history may be thrown away

▶ i.e. The state is a sufficient statistic of the future

10 / 68

State (1)

Figure 4: Maze Problem (From the internet)

State

▶ Each Square

▶ Start (Top left corner) state

▶ Termination (Bottom right corner)
state

11 / 68

State Transition Matrix

For a Markov state s and successor state s ′, the state transition probability is defined
by,

Pss′ = P[St+1 = s ′ | St = s]

State Transition Matrix P defines transition probability from all state s to all successor
state s ′

P = from

toP11 · · · P1n
...

Pn1 · · · Pnn


Where, ∑

s′

Pss′ = 1

This ensures that the process always transitions to some state.

12 / 68

State Transition Matrix (Intuition)

▶ We have three states A, B, and C

▶ State transition matrix,

P =

0.6 0.3 0.1
0.2 0.7 0.1
0.3 0.4 0.3


=

PAA PAB PAC

PBA PBB PBC

PCA PCB PCC



13 / 68

Environments

Fully observability: agent directly observes the environment state

Ot = Sa
t = Se

t

▶ Agent State = environment state = information state

▶ Formally, this is a Markov decision process (MDP)

Partial observability: agent indirectly observes environment:

▶ Robot navigation in a foggy environment

▶ Formally this is a Partially Observable Markov Decision Process (POMDP)

14 / 68

Return

▶ It is total accumulated reward that an agent receives from time step t onward

▶ Used to evaluate the total reward that the agent expects to receive starting from
time step t

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4...

Gt =
∞∑
k=0

γkRt+k+1

where,

▶ Rt+k+1 is the reward received at time step t + k + 1
▶ γϵ[0, 1] is a discount factor, helps to determine whether to take immediate reward

or not
▶ γ = 0, takes immediate rewards, ignoring all future rewards
▶ γ = 1, future rewards are valued equally with immediate rewards

15 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

16 / 68

Components of an RL Agent

▶ An RL agent may include one or more of these components
▶ Policy
▶ Value function
▶ Model

17 / 68

Policy

▶ A policy is a strategy that maps states to actions

▶ Using policy agent takes an action

▶ It can be deterministic or stochastic

▶ Deterministic policy: a specific action is chosen for each state

a = π(s)

▶ Stochastic policy: actions are chosen according to a probability distribution

π(a | s) = P[At = a | St = s]

18 / 68

Policy (1)

Figure 5: Maze Problem (From the internet)

Policy

▶ At start, agent takes down action to
avoid obstacle

19 / 68

Value Function

▶ Estimates the expected return/reward

▶ Used to evaluate the goodness/badness of states

Vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s]

= Eπ [Rt+1 + γ (Rt+2 + γRt+3 + . . .) | St = s]

= Eπ [Rt+1 + γVπ(St+1) | St = s]

20 / 68

Value Function (1)

Figure 6: Maze Problem (From the internet)

Value Function

▶ Estimates expected rewards for each
state (how valuable it is to be in a
particular state)

▶ V (s) = Rt+1 + γV (s′)
Agent is one step away from the cookie

▶ Here,
Rt+1 = +10 (Immediate reward),
V (s′) = 0 (No expected future
reward) and
γ = 0.9

▶ V(s) =10 + 0.9× 0 = +10

21 / 68

Value Function (2)

Figure 7: Maze Problem (From the internet)

Value Function

▶ Estimates expected rewards for each
state (how valuable it is to be in a
particular state)

▶ V (s) = Rt+1 + γV (s′)
Agent is two step away from the cookie

▶ Here,
Rt+1 = −1 (cost of the first step),
V (s′) = 10 (the value of the next
state, which is one step away from the
cookie),
γ = 0.9

▶ V (s) = −1+ 0.9× 10 = −1+ 9 = +8

22 / 68

Model

▶ A model predicts what the environment will do next

▶ We have two model Transition model and Reward model

▶ Transition model predicts the next state P

Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

Probability of transitioning to state s ′ from state s after taking action a

▶ Reward model predict the next reward R

Ra
s = E[Rt+1 | St = s,At = a]

Expected reward received after taking action a in state s

23 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

24 / 68

Markov Process

▶ A type of stochastic process where future state depends only on the present state
and not on the sequence of events that preceded it (Markov Property)

▶ Process are memoryless

Definition
A Markov process (or Markov chain) is defined as a tuple ⟨S ,P⟩, where
▶ S is a finite set of states S1,S2, S3, ...

▶ P is a state transition probability matrix

Pss′ = P[St+1 = s ′ | St = s]

25 / 68

Markov Reward Process

Markov Reward Process = Markov Process + Value

Definition
A Markov process (or Markov chain) is defined as a tuple ⟨S ,P,R, γ⟩, where
▶ S is a finite set of states S1,S2, S3, ...

▶ P is a state transition probability matrix

Pss′ = P[St+1 = s ′ | St = s]

▶ R is Reward function, Rs = E[Rt+1 | St = s]

▶ γ is discount factor, γϵ[0, 1]

26 / 68

Bellman Equation for MRPs

Value function can be decomposed into to parts:

▶ immediate reward Rt+1

▶ discounted value of successor state γv(St+1)

v(s) = E [Gt | St = s]

= E
[
Rt+1 + γRt+2 + γ2Rt+3 + · · · | St = s

]
= E [Rt+1 + γ (Rt+2 + γRt+3 + . . .) | St = s]

= E [Rt+1 + γGt+1 | St = s]

= E [Rt+1 + γv(St+1) | St = s]

And, E(xi) =
∑

P(xi)xi
v(s) = Rs + γ

∑
s′ϵS

Pss′v(s
′)

27 / 68

Solving Bellman Equation

We can express Bellman Equation in matrix form as,

v = R + γPv

where v is column vector with one entry per statev(1)...
v(n)

 =

R1
...
Rn

+ γ

P11 · · · P1n
...

P1n · · · Pnn


v(1)...
v(n)


We can solve this equation directly as,

v = R + γPv

(1− γP)v = R

v = (1− γP)−1R

28 / 68

Markov Decision Process

Markov Decision Process = Markov Reward Process + Action

Definition
A Markov process (or Markov chain) is defined as a tuple ⟨S ,A,P,R, γ⟩, where
▶ S is a finite set of states S1,S2, S3, ...

▶ A is a finite set of actions

▶ P is a state transition probability matrix

Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

▶ R is Reward function, Ra
s = E[Rt+1 | St = s,At = a]

▶ γ is discount factor, γϵ[0, 1]

29 / 68

Policies

Definition
A policy π is a distribution over actions given states,

π(a | s) = P(At = a | St = s)

▶ MDP policies depend on the current state (not the history)

▶ Given an MDP M = ⟨S ,A,P,R, γ⟩ and a policy π

▶ Can be written as,
M = ⟨S ,A,Pπ,Rπ, γ⟩

where
Pπ
ss′ =

∑
aϵA

π(a | s)Pa
ss′

Rπ
s =

∑
aϵA

π(a | s)Ra
s

30 / 68

Value Function

State-Value Function
A state-value Vπ(s) of an MDP is the expected return starting from state s, and then
following policy π thereafter,

Vπ = Eπ[Gt |St = s]

Action-Value Function
A state-value qπ(s, a) of an MDP is the expected return starting from state s, taking
action a and then following policy π thereafter,

qπ = Eπ[Gt |St = s,At = a]

31 / 68

Bellman Expectation Equation for Vπ

Vπ(s) =
∑
aϵA

π(a | s)qπ(s, a)

We have Bellman Equation for value function as,

qπ(s, a) = Ra
s + γ

∑
s′ϵS

Pa
ss′vπ(s

′)

So,

Vπ(s, a) =
∑
aϵA

π(a | s)

(
Ra
s + γ

∑
s′ϵS

Pa
ss′vπ(s

′)

)
And,

qπ(s, a) = Ra
s + γ

∑
s′ϵS

Pa
ss′

∑
a′ϵA

π(a′ | s ′)qπ(s ′, a′)

32 / 68

Optimal Value Function

Definition
The optimal state-value function v∗(s) is the highest expected return starting from
state s, assuming the agent follows optimal policy π from that point onward.

v∗(s) = max
π

vπ(s)

The optimal action-value function q∗(s) is the highest expected return starting from
state s, taking action a and assuming the agent follows optimal policy π from that
point onward.

q∗(s, a) = max
π

qπ(s, a)

▶ An MDP is ”solved” when we know the optimal value function

33 / 68

Bellman Optimality Equation

The value of a state v∗(s) under the optimal policy is simply the value of taking the
best action in that state

v∗(s) = max
a

q∗(s, a)

And, our optimal policy,

q∗(s, a) = Ra
s + γ

∑
s′ϵS

Pa
ss′v∗(s

′)

Finally,

v∗(s) = max
a

(
Ra
s + γ

∑
s′ϵS

Pa
ss′v∗(s

′)

)
And,

q∗(s, a) = Ra
s + γ

∑
s′ϵS

Pa
ss′ max

a
q∗(s

′, a′)

34 / 68

Optimal Policy

Definition
The policy that maximizes the expected cumulative reward for an agent starting from
any state. Or, the best strategy for the agent to follow in order to achieve the highest
possible long-term award.

π ≥ π′ if vπ(s) ≥ vπ′(s)

An optimal policy can be found by maximising over q∗(s, a),

π∗(a | s) =

1 if a = argmax
a∈A

q∗(s, a)

0 otherwise

35 / 68

Partially Observable MDP

MDP with hidden states

Definition
A POMDP is defined as a tuple ⟨S ,A,O,P,R,Z , γ⟩, where
▶ S is a finite set of states S1,S2, S3, ...

▶ A is a fine set of actions

▶ O is a fine set of observations

▶ P is a state transition probability matrix, Pa
ss′ = P[St+1 = s ′ | St = s,At = a]

▶ R is Reward function, Ra
s = E[Rt+1 | St = s,At = a]

▶ Z is an observation function

Z a
s′o = P[Ot+1 = o | St+1 = s ′,At = a]

▶ γ is discount factor, γϵ[0, 1]

36 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

37 / 68

DP for solving Bellman Optimality Equation

We can use dp to solve the MDP,

▶ Policy Iteration

▶ Value Iteration

38 / 68

Policy Iteration

▶ Policy Evaluation
▶ Compute value function vπ(s) for a given policy π

Vπ(s, a) =
∑
aϵA

π(a | s)

(
Ra
s + γ

∑
s′ϵS

Pa
ss′vπ(s

′)

)

▶ Repeat until value converges, difference between value function at iteration (k+1)
and (k) is less than threshold ∣∣∣V (k+1)

π (s)− V (k)
π (s)

∣∣∣ < ϵ

▶ Policy Improvement
▶ Act greedily, for each state s, update the policy by choosing the action that

maximizes the expected return

π′ = greedy(vπ)

▶ Repeat, until no improvement in the policy

39 / 68

Value Iteration

▶ Value Function Update
▶ The value of each state v(s) is updated by taking the maximum expected return

over all possible actions

vk+1(s) = max
a

∑
s′

P(s ′ | s, a) [R(s, a, s ′) + γvk(s
′)]

▶ Repeat until value converges, difference between value function at iteration (k+1)
and (k) is less than threshold ∣∣∣V (k+1)

π (s)− V (k)
π (s)

∣∣∣ < ϵ

▶ Policy Extraction
▶ Act greedily, for each state s, update the policy by choosing the action that

maximizes the expected return

π′ = greedy(vπ)

▶ Repeat, until no improvement in the policy

40 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

41 / 68

Motivation

▶ Unknown and complex environment, eg. Self driving car, stock trading

▶ Avoid the cost of Building a Model, eg. Alpha Go

▶ Learning from experience, eg. Personal Assistant

42 / 68

Monte-Carlo Reinforcement Learning

▶ Learn directly from episodes of experience so needs clear start and termination
state

▶ Learns from complete episodes: no bootstrapping

▶ Uses simplest possible idea: value = mean return
▶ Caveat: can only apply MC to episodic MDPs

▶ All episodes must terminate

43 / 68

Monte-Carlo Policy Evaluation

▶ Goal: learn vπ from episodes of experience under policy π

S1,A1,R2, ...,Sk ∼ π

▶ Return: the total discounted reward:

Gt = Rt+1 + γRt+2 + ...+ γT−1RT

▶ Uses epirical mean return instead of expected return as policy evaluation

44 / 68

Monte-Carlo Policy Evaluation

First Visit

▶ To evaluate state s

▶ The first time-step t that s is visited
in an episode,

Every-Visit

▶ To evaluate state s

▶ Every time-step t that s is visited in
an episode,

▶ Increment counter N(s)← N(s) + 1

▶ Increment total return S(s)→ S(s) + G (t)

Now, once enough episodes have been observed,

▶ Value is estimated by mean return V (s) = S(s)/N(s)

▶ By law of large numbers, V (s)→ vπ(s) as N(s)→∞ (More sample)

Waiting to compute average over many episodes

45 / 68

Incremental Monte-Carlo Updates

▶ Update V (s) incrementally after episode S1,A1,R2, ...,ST
▶ For each state St with return Gt

N(St)← N(St) + 1

V (St)← V (St) +
1

N(St)
(Gt − V (St))

▶ In non-stationary problems, it can be useful to track a running mean, i.e. forget
old episodes

V (St)← V (St) + α(Gt − V (St))

Note: (Gt − V (St)) represents the difference between the actual return and the
current estimated value of a state, called Prediction Error/ Update Signal.

46 / 68

Temporal Difference Learning

▶ TD learns from incomplete episodes, by bootstraping

Simplest temporal-difference learning: TD(0)

▶ Update value V (St) toward estimated return Rt+1 + γV (St+1)

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))

▶ Rt+1 + γV (St+1) is called the TD target

▶ δt = Rt+1 + γV (St+1)− V (St) is called the TD error

▶ In TD(λ), λ controls how far into the future the updates look, TD(0) (one-step
look-ahead) and Monte Carlo (complete episode look-ahead)

47 / 68

Learning Methods in RL

▶ Monte Carlo methods

▶ Temporal Difference (TD) Learning

Dynamic Programming Monte Carlo Learning TD Learning

48 / 68

Exploration v/s Exploitation

Exploration

▶ Try out different actions to gather information about environment

▶ The agent may potentially find better actions which lead to higher reward in the
future

▶ Trying different restaurants sometime

Exploitation

▶ Choose best-known action based on its current knowledge

▶ The agent try to maximize the immediate rewards using learned policy

▶ Going to the favorite restaurants

▶ You might miss out on a restaurant you’ve never tried before

49 / 68

ϵ-greedy

▶ Simple and effective idea to balance exploration v/s exploitation trade-off

For m possible actions,

▶ With probability 1− ϵ, choose greedy action

▶ With probability ϵ, choose random action

π(a|s) =

{
1− ϵ+ ϵ

m , if a = argmaxa Q(s, a)
ϵ
m , otherwise

Example, ϵ = 0.1,

▶ 90% of the time, agent will take best-known action

▶ 10% of the time, agent will try random action

50 / 68

On-policy and off-policy learning

On-policy learning

▶ Policy used for learning = Policy used for acting

▶ The agent evaluates and improves the policy that is currently followed

▶ Eg. SARSA

Off-policy learning

▶ Policy used for learning ̸= Policy used for acting

▶ The agent can evaluate and improve the target policy while following a different
policy to gather data

▶ Eg. Q-learning

51 / 68

SARSA (State-Action-Reward-State-Action)

▶ On-policy TD learning

S ,A, Current Estimates Q(s, a)

S ′

A′, Estimates Future Reward Q(s ′, a′)

R ← Observed Reward

Q(s, a)← Q(s, a) + α [Rt+1 + γQ(s′, a′)− Q(s, a)]

Q(s, a)← Q(s, a) + α× TD Error

52 / 68

Q Learning

▶ Off-policy TD learning

Q(s, a)← Q(s, a) + α

[
Rt+1 + γmax

a′
Q(s′, a′)− Q(s, a)

]
Q(s, a)← Q(s, a) + α× TD Error

53 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

54 / 68

Large-Scale Reinforcement Learning

▶ We have represented value function by a lookup table
▶ Every state s has an entry V (s)
▶ Or every state-action par s, a has an entry Q(s, a)

▶ Problem with large MDPs:
▶ There are too many states and/or actions to store in memory
▶ It is too slow to learn the value of each state individually

▶ Solution for large MDPs would use Function approximators
▶ Linear combinations of features
▶ Neural network
▶ Decision tree
▶ Nearest neighbour
▶ ...

55 / 68

Value Function Approximation

▶ Solution for large MDPs:
▶ Estimate value function with function approximation

v̂(s,w) ≈ vπ(s)

q̂(s, a,w) ≈ qπ(s, a)

where w represents the parameters of the approximation (such as the weights of a
neural network or linear model)

▶ Generalize unseen states from seen states
▶ Use MC or TD learning to update w

▶ Incremental Methods

▶ Batch Methods

56 / 68

Gradient Descent

▶ Let J(w) be differential function of the parameter vector w

▶ Define the gradient of J(w),

∇wJ(w) =


∂J(w)
∂w1

∂J(w)
∂w2
...

∂J(w)
∂wn


To find a local minimum of J(w)

▶ Adjust w in the direction of -ve gradient

∆w = −1

2
α∇wJ(w)

Where, α is a step-size parameter

57 / 68

Value Function Approx. using Stochastic Gradient Descent

▶ Goal: to find the parameter vector w that minimizes the mean-squared error
between the true value function vπ(s) and the approximate value function v̂(s,w)

J(w) = Eπ

[
(vπ(S)− v̂(S ,w))2

]
▶ Gradient descent finds a local minimum

∆w = −1

2
α∇wJ(w)

= αEπ [(vπ(S)− v̂(S ,w))∇w v̂(S ,w)]

▶ Stochastic gradient descent samples randomly over dataset (or states)

∆w = α(vπ(S)− v̂(S ,w))∇w v̂(S ,w)

58 / 68

Incremental Prediction Algorithms

▶ In supervised learning we will have target or actual o/p to compare prediction and
find error

▶ But in RL there is no supervisor, only rewards
▶ So, we substitute a target for vπ(s)

▶ For MC, the target is the return Gt

∆w = α(Gt − v̂(S ,w))∇w v̂(S ,w)

▶ For TD(0)), the target is the TD target

∆w = α(Rt+1 + γv̂(St+1,w)− v̂(S ,w))∇w v̂(S ,w)

59 / 68

Batch Reinforcement Learning

▶ Gradient descent didn’t make the maximum use of the experiences

▶ Batch methods seek to find the best fitting value function

60 / 68

Stochastic Gradient Descent with Experience Replay

Given experience consisting of ⟨state, value⟩ pairs

D = ⟨s1, vπ1 ⟩, ⟨s2, vπ2 ⟩, . . . ⟨sT , vπT ⟩

Repeat:

1. Sample state, value from experience

⟨s1, vπ1 ⟩ ∼ D

2. Apply SGD update

∆w = α(vπ(S)− v̂(S ,w))∇w v̂(S ,w)

61 / 68

Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

▶ Select an action using the epsilon-greedy policy.

▶ Store the experience (st , at , rt+1, st+1) in the replay memory D.
▶ Sample a mini-batch of transitions (s, a, r , s ′) from D
▶ Compute Q-learning targets w.r.t. old, fixed parameters w−

▶ Optimize MSE between Q-network (prediction) and Q-learning targets

Li (wi) = Es,a,r ,s′∼Di

[(
r + γmax

a′
Q(s ′, a′;w−

i)− Q(s, a;wi)

)2
]

Where, Q-learning Target = r + γmaxa′Q(s′, a′;w−
i)

Q-value from Q-network = Q(s, a;wi)

▶ Use different variant of Gradient Descent

62 / 68

Introduction

RL agent components

Markov Decision Process

Dynamic Programming

Model Free Learning

Value Function Approximation

Policy Gradient

63 / 68

Policy Gradient

▶ Goal: given policy πθ(s, a) with parameters θ, find best θ

▶ How do we know the quality of a policy πθ?

▶ Reward function/ objective function,

J(θ) =
∑
s

dπθ(s)V θπ(s) =
∑
s

dπθ(s)
∑
a

πθ(s, a)R
a
s

where dπθ(s) is stationary distribution of Markov chain for πθ

64 / 68

Policy Gradient

▶ Policy gradient algorithms search for a local maximum in J(θ) by ascending the
gradient of the policy, w.r.t. parameters θ

∆θ = α∇θJ(θ)

▶ Where ∇θJ(θ) is the policy gradient

∇θJ(θ) =


∂J(θ)
∂θ1
∂J(θ)
∂θ2
...

∂J(θ)
∂θn


From Policy Gradient Theorem,

∇θJ(θ) = Eπθ
[∇θlogθπ(s, a)Q

πθ(s, a)]

Where α is a step-size parameter

65 / 68

Actor-Critic Reinforcement Learning

▶ Using linear value function approximation: Qw (s, a) = ϕ(s, a)⊤w
Critic: Updates w by linear TD(0)
Actor: Updates θ by policy gradient

Function QAC

Initialise s, θ
Sample a ∼ πθ
for each step of episode do

Sample reward r = Ra; Sample transition s ′ ∼ Pa
s

Sample action a′ ∼ πθ(s
′, a′)

δ = r + γQw (s
′, a′)− Qw (s, a)

θ = θ + α∇θ log πθ(s, a)Qw (s, a)
w ← w + βδϕ(s, a)
a← a′, s ← s ′

end for

end for

66 / 68

References

▶ https://www.davidsilver.uk/teaching/

▶ https://www.samyzaf.com/ML/rl/qmaze.html

67 / 68

Thank You

68 / 68

	Introduction
	Reward
	History
	State
	Return

	RL agent components
	Policy
	Value Function
	Model

	Markov Decision Process
	Markov Process
	Markov Reward Process
	Definition
	Policies
	Value Function
	Bellman Expectation Equations
	Optimal Value Function
	Bellman Optimality Equation
	Optimal Policy
	Partially Observable MDP

	Dynamic Programming
	DP for solving Bellman Optimality Equation
	Policy Iteration
	Value Iteration

	Model Free Learning
	Motivation
	Monte-Carlo Reinforcement Learning
	Temporal Difference Learning
	Learning Methods in RL
	Exploration v/s Exploitation

	Value Function Approximation
	Introduction
	Gradient Descent
	Batch Methods

	Policy Gradient
	Policy Gradient
	Actor-Critic Reinforcement Learning

	References
	Thank you

